翻訳と辞書
Words near each other
・ Fluorescence (album)
・ Fluorescence anisotropy
・ Fluorescence correlation spectroscopy
・ Fluorescence cross-correlation spectroscopy
・ Fluorescence image-guided surgery
・ Fluorescence in situ hybridization
・ Fluorescence in the life sciences
・ Fluorescence intensity decay shape microscopy
・ Fluorescence interference contrast microscopy
・ Fluorescence intermittency
・ Fluorescence intermittency in colloidal nanocrystals
・ Fluorescence loss in photobleaching
・ Fluorescence microscope
・ Fluorescence recovery after photobleaching
・ Fluorescence recovery protein
Fluorescence spectroscopy
・ Fluorescence-lifetime imaging microscopy
・ Fluorescences
・ Fluorescent (disambiguation)
・ Fluorescent Adolescent
・ Fluorescent Black
・ Fluorescent Black (comics)
・ Fluorescent chloride sensors
・ Fluorescent glucose biosensor
・ Fluorescent Grey
・ Fluorescent Grey/Oh, It's Such a Shame
・ Fluorescent in situ sequencing
・ Fluorescent lamp
・ Fluorescent lamp crusher
・ Fluorescent lamp recycling


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fluorescence spectroscopy : ウィキペディア英語版
Fluorescence spectroscopy
Fluorescence spectroscopy (also known as fluorometry or spectrofluorometry) is a type of electromagnetic spectroscopy which analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy.
Devices that measure fluorescence are called fluorometers
==Theory==

Molecules have various states referred to as energy levels. Fluorescence spectroscopy is primarily concerned with electronic and vibrational states. Generally, the species being examined has a ground electronic state (a low energy state) of interest, and an excited electronic state of higher energy. Within each of these electronic states are various vibrational states.〔(Animation for the principle of fluorescence and UV-visible absorbance )〕
In fluorescence spectroscopy, the species is first excited, by absorbing a photon, from its ground electronic state to one of the various vibrational states in the excited electronic state. Collisions with other molecules cause the excited molecule to lose vibrational energy until it reaches the lowest vibrational state of the excited electronic state. This process is often visualized with a Jablonski diagram.〔
The molecule then drops down to one of the various vibrational levels of the ground electronic state again, emitting a photon in the process.〔 As molecules may drop down into any of several vibrational levels in the ground state, the emitted photons will have different energies, and thus frequencies. Therefore, by analysing the different frequencies of light emitted in fluorescent spectroscopy, along with their relative intensities, the structure of the different vibrational levels can be determined.
For atomic species, the process is similar; however, since atomic species do not have vibrational energy levels, the emitted photons are often at the same wavelength as the incident radiation. This process of re-emitting the absorbed photon is "resonance fluorescence" and while it is characteristic of atomic fluorescence, is seen in molecular fluorescence as well.〔''Principles Of Instrumental Analysis'' F.James Holler, Douglas A. Skoog & Stanley R. Crouch 2006〕
In a typical fluorescence (emission) measurement, the excitation wavelength is fixed and the detection wavelength varies, while in a fluorescence excitation measurement the detection wavelength is fixed and the excitation wavelength is varied across a region of interest. An emission map is measured by recording the emission spectra resulting from a range of excitation wavelengths and combining them all together. This is a three dimensional surface data set: emission intensity as a function of excitation and emission wavelengths, and is typically depicted as a contour map.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fluorescence spectroscopy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.